This website requires JavaScript.

On Sobolev inequalities with Choquet integrals

Petteri HarjulehtoRitva Hurri-Syrj\"anen
Nov 2023
0被引用
0笔记
摘要原文
We consider integrals in the sense of Choquet with respect to the Hausdorff content ${\mathcal{H}}^{\delta}_\infty$ for continuously differentiable functions defined on open, connected sets $\Omega$ in ${\mathbb{R}}^n$, $n\geq 2$, $0<\delta\le n$. In particular, for these functions we prove Sobolev inequalities in the limiting case $p=\delta /n$ and the case $p>n$, here $p$ being the integrability exponent of the gradient of the given function. These results complement previous results for Poincar\'e-Sobolev and Trudinger inequalities.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答