This website requires JavaScript.

Spectrally distinguishing symmetric spaces I

Emilio A. LauretJuan Sebasti\'an Rodr\'iguez
Nov 2023
0被引用
0笔记
摘要原文
We prove that the irreducible symmetric space of complex structures on $\mathbb R^{2n}$ (resp.\ quaternionic structures on $\mathbb C^{2n}$) is spectrally unique within a $2$-parameter (resp.\ $3$-parameter) family of homogeneous metrics on the underlying differentiable manifold. Such families are strong candidates to contain all homogeneous metrics admitted on the corresponding manifolds. The main tool in the proof is an explicit expression for the smallest positive eigenvalue of the Laplace-Beltrami operator associated to each homogeneous metric involved. As a second consequence of this expression, we prove that any non-symmetric Einstein metric in the homogeneous families mentioned above are $\nu$-unstable.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答