This website requires JavaScript.

Whispers of Doubt Amidst Echoes of Triumph in NLP Robustness

Ashim GuptaRishanth RajendhranNathan StringhamVivek SrikumarAna Marasovi\'c
Nov 2023
0被引用
0笔记
摘要原文
Are the longstanding robustness issues in NLP resolved by today's larger and more performant models? To address this question, we conduct a thorough investigation using 19 models of different sizes spanning different architectural choices and pretraining objectives. We conduct evaluations using (a) OOD and challenge test sets, (b) CheckLists, (c) contrast sets, and (d) adversarial inputs. Our analysis reveals that not all OOD tests provide further insight into robustness. Evaluating with CheckLists and contrast sets shows significant gaps in model performance; merely scaling models does not make them sufficiently robust. Finally, we point out that current approaches for adversarial evaluations of models are themselves problematic: they can be easily thwarted, and in their current forms, do not represent a sufficiently deep probe of model robustness. We conclude that not only is the question of robustness in NLP as yet unresolved, but even some of the approaches to measure robustness need to be reassessed.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答