This website requires JavaScript.

On Convex Optimal Value Functions For POSGs

Rafael F. CunhaJacopo CastelliniJohan PeralezJilles S. Dibangoye
Nov 2023
0被引用
0笔记
摘要原文
Multi-agent planning and reinforcement learning can be challenging when agents cannot see the state of the world or communicate with each other due to communication costs, latency, or noise. Partially Observable Stochastic Games (POSGs) provide a mathematical framework for modelling such scenarios. This paper aims to improve the efficiency of planning and reinforcement learning algorithms for POSGs by identifying the underlying structure of optimal state-value functions. The approach involves reformulating the original game from the perspective of a trusted third party who plans on behalf of the agents simultaneously. From this viewpoint, the original POSGs can be viewed as Markov games where states are occupancy states, \ie posterior probability distributions over the hidden states of the world and the stream of actions and observations that agents have experienced so far. This study mainly proves that the optimal state-value function is a convex function of occupancy states expressed on an appropriate basis in all zero-sum, common-payoff, and Stackelberg POSGs.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答