This website requires JavaScript.

Banach-Tarski Embeddings and Transformers

Joshua Maher
Nov 2023
0被引用
2笔记
摘要原文
We introduce a new construction of embeddings of arbitrary recursive data structures into high dimensional vectors. These embeddings provide an interpretable model for the latent state vectors of transformers. We demonstrate that these embeddings can be decoded to the original data structure when the embedding dimension is sufficiently large. This decoding algorithm has a natural implementation as a transformer. We also show that these embedding vectors can be manipulated directly to perform computations on the underlying data without decoding. As an example we present an algorithm that constructs the embedded parse tree of an embedded token sequence using only vector operations in embedding space.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答