This website requires JavaScript.

Loosely Bernoulli zero exponent measures for elliptic matrix cocycles

L. J. D\'iazK. GelfertM. Rams
Nov 2023
0被引用
0笔记
摘要原文
For an open and dense subset of elliptic ${\rm SL}(2,\mathbb R)$ matrix cocycles, we construct a family of loosely Bernoulli ergodic measures with zero top Lyapunov exponent. This provides a counterpart to a classical result by Furstenberg. The construction gives also an $\bar f$-connected set of measures with these properties whose entropies vary continuously from zero to almost the maximal possible value. We also obtain an analogous result for an open class of nonhyperbolic step skew products with $\mathbb S^1$ diffeomorphism fiber maps. Our approach combines substitution schemes between finite letter alphabets and differentiable dynamics.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答