This website requires JavaScript.

Lighter, yet More Faithful: Investigating Hallucinations in Pruned Large Language Models for Abstractive Summarization

George ChrysostomouZhixue ZhaoMiles WilliamsNikolaos Aletras
Nov 2023
Despite their remarkable performance on abstractive summarization, large language models (LLMs) face two significant challenges: their considerable size and tendency to hallucinate. Hallucinations are concerning because they erode the reliability of LLMs and raise safety issues. Pruning is a technique that reduces model size by removing redundant weights to create sparse models that enable more efficient inference. Pruned models yield comparable performance to their counterpart full-sized models, making them ideal alternatives when operating on a limited budget. However, the effect that pruning has upon hallucinations in abstractive summarization with LLMs has yet to be explored. In this paper, we provide an extensive empirical study on the hallucinations produced by pruned models across three standard summarization tasks, two pruning approaches, three instruction-tuned LLMs, and three hallucination evaluation metrics. Surprisingly, we find that pruned LLMs hallucinate less compared to their full-sized counterparts. Our follow-up analysis suggests that pruned models tend to depend more on the source input and less on their parametric knowledge from pre-training for generation. This greater dependency on the source input leads to a higher lexical overlap between generated content and the source input, which can be a reason for the reduction in hallucinations.
发布时间 · 被引用数 · 默认排序
发布时间 · 被引用数 · 默认排序