This website requires JavaScript.

Kagome Materials II: SG 191: FeGe as a LEGO Building Block for the Entire 1:6:6 series: hidden d-orbital decoupling of flat band sectors, effective models and interaction Hamiltonians

Yi JiangHaoyu HuDumitru C\u{a}lug\u{a}ru ...+4 B. Andrei Bernevig
Nov 2023
The electronic structure and interactions of kagome materials such as 1:1 (FeGe class) and 1:6:6 (MgFe$_6$Ge$_6$ class) are complicated and involve many orbitals and bands at the Fermi level. Current theoretical models treat the systems in an $s$-orbital kagome representation, unsuited and incorrect both quantitatively and qualitatively to the material realities. In this work, we lay the basis of a faithful framework of the electronic model for this large class of materials. We show that the complicated ``spaghetti" of electronic bands near the Fermi level can be decomposed into three groups of $d$-Fe orbitals coupled to specific Ge orbitals. Such decomposition allows for a clear analytical understanding (leading to different results than the simple $s$-orbital kagome models) of the flat bands in the system based on the $S$-matrix formalism of generalized bipartite lattices. Our three minimal Hamiltonians can reproduce the quasi-flat bands, van Hove singularities, topology, and Dirac points close to the Fermi level, which we prove by extensive ab initio studies. We also obtain the interacting Hamiltonian of $d$ orbitals in FeGe using the constraint random phase approximation (cRPA) method. We then use this as a fundamental ``LEGO"-like building block for a large family of 1:6:6 kagome materials, which can be obtained by doubling and perturbing the FeGe Hamiltonian. We applied the model to its kagome siblings FeSn and CoSn, and also MgFe$_6$Ge$_6$. Our work serves as the first complete framework for the study of the interacting phase diagram of kagome compounds.
发布时间 · 被引用数 · 默认排序
发布时间 · 被引用数 · 默认排序