This website requires JavaScript.

Exploring the Practicality of Generative Retrieval on Dynamic Corpora

Soyoung YoonChaeeun KimHyunji LeeJoel JangSohee YangMinjoon Seo
Nov 2023
0被引用
0笔记
摘要原文
Benchmarking the performance of information retrieval (IR) methods are mostly conducted with a fixed set of documents (static corpora); in realistic scenarios, this is rarely the case and the document to be retrieved are constantly updated and added. In this paper, we focus on conducting a comprehensive comparison between two categories of contemporary retrieval systems, Dual Encoders (DE) and Generative Retrievals (GR), in a dynamic scenario where the corpora to be retrieved is updated. We also conduct an extensive evaluation of computational and memory efficiency, crucial factors for IR systems for real-world deployment. Our results demonstrate that GR is more adaptable to evolving knowledge (+13-18% on the StreamingQA Benchmark), robust in handling data with temporal information (x 10 times), and efficient in terms of memory (x 4 times), indexing time (x 6 times), and inference flops (x 10 times). Our paper highlights GR's potential for future use in practical IR systems.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答