This website requires JavaScript.

Grounding or Guesswork? Large Language Models are Presumptive Grounders

Omar ShaikhKristina Gligori\'cAshna KhetanMatthias GerstgrasserDiyi YangDan Jurafsky
Nov 2023
0被引用
2笔记
摘要原文
Effective conversation requires common ground: a shared understanding between the participants. Common ground, however, does not emerge spontaneously in conversation. Speakers and listeners work together to both identify and construct a shared basis while avoiding misunderstanding. To accomplish grounding, humans rely on a range of dialogue acts, like clarification (What do you mean?) and acknowledgment (I understand.). In domains like teaching and emotional support, carefully constructing grounding prevents misunderstanding. However, it is unclear whether large language models (LLMs) leverage these dialogue acts in constructing common ground. To this end, we curate a set of grounding acts and propose corresponding metrics that quantify attempted grounding. We study whether LLMs use these grounding acts, simulating them taking turns from several dialogue datasets, and comparing the results to humans. We find that current LLMs are presumptive grounders, biased towards assuming common ground without using grounding acts. To understand the roots of this behavior, we examine the role of instruction tuning and reinforcement learning with human feedback (RLHF), finding that RLHF leads to less grounding. Altogether, our work highlights the need for more research investigating grounding in human-AI interaction.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答