This website requires JavaScript.

Towards A Unified View of Answer Calibration for Multi-Step Reasoning

Shumin DengNingyu ZhangNay OoBryan Hooi
Nov 2023
0被引用
2笔记
摘要原文
Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. Usually, answer calibration strategies such as step-level or path-level calibration play a vital role in multi-step reasoning. While effective, there remains a significant gap in our understanding of the key factors that drive their success. In this paper, we break down the design of recent answer calibration strategies and present a unified view which establishes connections between them. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答