This website requires JavaScript.

Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts

Chenghao YangTuhin ChakrabartyKarli R HochstatterMelissa N SlavinNabila El-BasselSmaranda Muresan
Nov 2023
0被引用
0笔记
摘要原文
In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids (https://www.cdc.gov/drugoverdose/epidemic/index.html) making it a national public health emergency (USDHHS, 2017). To more effectively prevent unintentional opioid overdoses, medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors, often acting as indicators for opioid use disorder. Towards this, we present a moderate size corpus of 2500 opioid-related posts from various subreddits spanning 6 different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum. The dataset will be made available for research on Github in the formal version.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答