This website requires JavaScript.

Reasoning over Description Logic-based Contexts with Transformers

Angelos PoulisEleni TsalapatiManolis Koubarakis
Nov 2023
One way that the current state of the art measures the reasoning ability of transformer-based models is by evaluating accuracy in downstream tasks like logical question answering or proof generation over synthetic contexts expressed in natural language. However, most of the contexts used are in practice very simple; in most cases, they are generated from short first-order logic sentences with only a few logical operators and quantifiers. In this work, we seek to answer the question how well a transformer-based model will perform reasoning over expressive contexts. For this purpose, we construct a synthetic natural language question-answering dataset, generated by description logic knowledge bases. For the generation of the knowledge bases, we use the expressive language $\mathcal{ALCQ}$. The resulting dataset contains 384K examples, and increases in two dimensions: i) reasoning depth, and ii) length of sentences. We show that the performance of our DeBERTa-based model, DELTA$_M$, is marginally affected when the reasoning depth is increased and it is not affected at all when the length of the sentences is increasing. We also evaluate the generalization ability of the model on reasoning depths unseen at training, both increasing and decreasing, revealing interesting insights into the model's adaptive generalization abilities.
发布时间 · 被引用数 · 默认排序
发布时间 · 被引用数 · 默认排序