This website requires JavaScript.

Leveraging Activation Maximization and Generative Adversarial Training to Recognize and Explain Patterns in Natural Areas in Satellite Imagery

Ahmed EmamTimo T. StombergRibana Roscher
Nov 2023
0被引用
0笔记
摘要原文
Natural protected areas are vital for biodiversity, climate change mitigation, and supporting ecological processes. Despite their significance, comprehensive mapping is hindered by a lack of understanding of their characteristics and a missing land cover class definition. This paper aims to advance the explanation of the designating patterns forming protected and wild areas. To this end, we propose a novel framework that uses activation maximization and a generative adversarial model. With this, we aim to generate satellite images that, in combination with domain knowledge, are capable of offering complete and valid explanations for the spatial and spectral patterns that define the natural authenticity of these regions. Our proposed framework produces more precise attribution maps pinpointing the designating patterns forming the natural authenticity of protected areas. Our approach fosters our understanding of the ecological integrity of the protected natural areas and may contribute to future monitoring and preservation efforts.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答