This website requires JavaScript.

Ground state solutions for a non-local type problem in fractional Orlicz Sobolev spaces

Liben WangXingyong ZhangCuiling Liu
Nov 2023
0被引用
0笔记
摘要原文
In this paper, we study the following nonlocal problem in fractional Orlicz Sobolev spaces \begin{eqnarray*} (-\Delta_{\Phi})^{s}u+V(x)a(|u|)u=f(x,u),\quad x\in\mathbb{R}^N, \end{eqnarray*} where $(-\Delta_{\Phi})^{s}(s\in(0, 1))$ denotes the non-local and maybe non-homogeneous operator, the so-called fractional $\Phi$-Laplacian. Without assuming the Ambrosetti-Rabinowitz type and the Nehari type conditions on the nonlinearity, we obtain the existence of ground state solutions for the above problem in periodic case. The proof is based on a variant version of the mountain pass theorem and a Lions' type result for fractional Orlicz Sobolev spaces.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答