This website requires JavaScript.
DOI: 10.4204/EPTCS.393.9

Formal Verification of Zero-Knowledge Circuits

Alessandro Coglio (Kestrel InstituteAleo Systems Inc.)Eric McCarthy (Kestrel InstituteAleo Systems Inc.)Eric W. Smith (Kestrel Institute)
Nov 2023
0被引用
0笔记
摘要原文
Zero-knowledge circuits are sets of equality constraints over arithmetic expressions interpreted in a prime field; they are used to encode computations in cryptographic zero-knowledge proofs. We make the following contributions to the problem of ensuring that a circuit correctly encodes a computation: a formal framework for circuit correctness; an ACL2 library for prime fields; an ACL2 model of the existing R1CS (Rank-1 Constraint Systems) formalism to represent circuits, along with ACL2 and Axe tools to verify circuits of this form; a novel PFCS (Prime Field Constraint Systems) formalism to represent hierarchically structured circuits, along with an ACL2 model of it and ACL2 tools to verify circuits of this form in a compositional and scalable way; verification of circuits, ranging from simple to complex; and discovery of bugs and optimizations in existing zero-knowledge systems.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答