This website requires JavaScript.

Multi-stage Euler-Maruyama methods for backward stochastic differential equations driven by continuous-time Markov chains

Akihiro Kaneko
Nov 2023
0被引用
0笔记
摘要原文
Numerical methods for computing the solutions of Markov backward stochastic differential equations (BSDEs) driven by continuous-time Markov chains (CTMCs) are explored. The main contributions of this paper are as follows: (1) we observe that Euler-Maruyama temporal discretization methods for solving Markov BSDEs driven by CTMCs are equivalent to exponential integrators for solving the associated systems of ordinary differential equations (ODEs); (2) we introduce multi-stage Euler-Maruyama methods for effectively solving "stiff" Markov BSDEs driven by CTMCs; these BSDEs typically arise from the spatial discretization of Markov BSDEs driven by Brownian motion; (3) we propose a multilevel spatial discretization method on sparse grids that efficiently approximates high-dimensional Markov BSDEs driven by Brownian motion with a combination of multiple Markov BSDEs driven by CTMCs on grids with different resolutions. We also illustrate the effectiveness of the presented methods with a number of numerical experiments in which we treat nonlinear BSDEs arising from option pricing problems in finance.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答