This website requires JavaScript.

On the minimum degree of minimally $ t $-tough, claw-free graphs

Hui MaXiaomin HuWeihua Yang
Nov 2023
0被引用
0笔记
摘要原文
A graph $ G $ is minimally $ t $-tough if the toughness of $ G $ is $ t $ and deletion of any edge from $ G $ decreases its toughness. Katona et al. conjectured that the minimum degree of any minimally $ t $-tough graph is $ \lceil 2t\rceil $ and proved that the minimum degree of minimally $ \frac{1}2 $-tough and $ 1 $-tough, claw-free graphs is 1 and 2, respectively. We have show that every minimally $ 3/2 $-tough, claw-free graph has a vertex of degree of $ 3 $. In this paper, we give an upper bound on the minimum degree of minimally $t$-tough, claw-free graphs for $ t\geq 2 $.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答