This website requires JavaScript.

Reduction of large-scale RLCk models via low-rank balanced truncation

Christos GiamouzisDimitrios GaryfallouAnastasis VagenasNestor Evmorfopoulos
Nov 2023
0被引用
0笔记
摘要原文
Model order reduction (MOR) is an important step in the design process of integrated circuits. Specifically, the electromagnetic models extracted from modern complex designs result in a large number of passive elements that introduce limitations in the simulation process. MOR techniques based on balanced truncation (BT) can overcome these limitations by producing compact reduced-order models (ROMs) that approximate the behavior of the original models at the input/output ports. In this paper, we present a low-rank BT method that exploits the extended Krylov subspace and efficient implementation techniques for the reduction of large-scale models. Experimental evaluation on a diverse set of analog and mixed-signal circuits with millions of elements indicates that up to x5.5 smaller ROMs can be produced with similar accuracy to ANSYS RaptorX ROMs.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答