Power of quantum measurement in simulating unphysical operations
Xuanqiang ZhaoLei ZhangBenchi ZhaoXin Wang
Xuanqiang ZhaoLei ZhangBenchi ZhaoXin Wang
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
The manipulation of quantum states through linear maps beyond quantum operations has many important applications in various areas of quantum information processing. Current methods simulate unphysical maps by sampling physical operations, but in a classical way. In this work, we show that using quantum measurement in place of classical sampling leads to lower simulation costs for general Hermitian-preserving maps. Remarkably, we establish the equality between the simulation cost and the well-known diamond norm, thus closing a previously known gap and assigning diamond norm a universal operational meaning as a map's simulability. We demonstrate our method in two applications closely related to error mitigation and quantum machine learning, where it exhibits a favorable scaling. These findings highlight the power of quantum measurement in simulating unphysical operations, in which quantum interference is believed to play a vital role. Our work paves the way for more efficient sampling techniques and has the potential to be extended to more quantum information processing scenarios.