Maximum principles in unbounded Riemannian domains
Andrea Bisterzo
Andrea Bisterzo
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
The necessity of a Maximum Principle arises naturally when one is interested in the study of qualitative properties of solutions to partial differential equations. In general, to ensure the validity of these kind of principles one has to consider some additional assumptions on the ambient manifold or on the differential operator. The present work aims to address, using both of these approaches, the problem of proving Maximum Principles for second order, elliptic operators acting on unbounded Riemannian domains under Dirichlet boundary conditions. Hence there is a natural division of this article in two distinct and standalone sections.