This website requires JavaScript.

Chaotic properties for billiards in circular polygons

Andrew ClarkeRafael Ram\'irez-Ros
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
We study billiards in domains enclosed by circular polygons. These are closed $C^1$ strictly convex curves formed by finitely many circular arcs. We prove the existence of a set in phase space, corresponding to generic sliding trajectories close enough to the boundary of the domain, in which the return billiard dynamics is semiconjugate to a transitive subshift on infinitely many symbols that contains the full $N$-shift as a topological factor for any $N \in \mathbb{N}$, so it has infinite topological entropy. We prove the existence of uncountably many asymptotic generic sliding trajectories approaching the boundary with optimal uniform linear speed, give an explicit exponentially big (in $q$) lower bound on the number of $q$-periodic trajectories as $q \to \infty$, and present an unusual property of the length spectrum. Our proofs are entirely analytical.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答