PseudoCal: Towards Initialisation-Free Deep Learning-Based Camera-LiDAR Self-Calibration
Mathieu CocheteuxJulien MoreauFranck Davoine
Mathieu CocheteuxJulien MoreauFranck Davoine
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
Camera-LiDAR extrinsic calibration is a critical task for multi-sensor fusion in autonomous systems, such as self-driving vehicles and mobile robots. Traditional techniques often require manual intervention or specific environments, making them labour-intensive and error-prone. Existing deep learning-based self-calibration methods focus on small realignments and still rely on initial estimates, limiting their practicality. In this paper, we present PseudoCal, a novel self-calibration method that overcomes these limitations by leveraging the pseudo-LiDAR concept and working directly in the 3D space instead of limiting itself to the camera field of view. In typical autonomous vehicle and robotics contexts and conventions, PseudoCal is able to perform one-shot calibration quasi-independently of initial parameter estimates, addressing extreme cases that remain unsolved by existing approaches.