This website requires JavaScript.

AMuRD: Annotated Multilingual Receipts Dataset for Cross-lingual Key Information Extraction and Classification

Abdelrahman AbdallahMahmoud AbdallaMohamed ElkasabyYasser ElbendaryAdam Jatowt
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
Key information extraction involves recognizing and extracting text from scanned receipts, enabling retrieval of essential content, and organizing it into structured documents. This paper presents a novel multilingual dataset for receipt extraction, addressing key challenges in information extraction and item classification. The dataset comprises $47,720$ samples, including annotations for item names, attributes like (price, brand, etc.), and classification into $44$ product categories. We introduce the InstructLLaMA approach, achieving an F1 score of $0.76$ and an accuracy of $0.68$ for key information extraction and item classification. We provide code, datasets, and checkpoints.\footnote{\url{https://github.com/Update-For-Integrated-Business-AI/AMuRD}}.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答