This website requires JavaScript.

2-Colorable Perfect Matching is NP-complete in 2-Connected 3-Regular Planar Graphs

Erik D. DemaineKritkorn KarntikoonNipun Pitimanaaree
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
The 2-colorable perfect matching problem asks whether a graph can be colored with two colors so that each node has exactly one neighbor with the same color as itself. We prove that this problem is NP-complete, even when restricted to 2-connected 3-regular planar graphs. In 1978, Schaefer proved that this problem is NP-complete in general graphs, and claimed without proof that the same result holds when restricted to 3-regular planar graphs. Thus we fill in the missing proof of this claim, while simultaneously strengthening to 2-connected graphs (which implies existence of a perfect matching). We also prove NP-completeness of $k$-colorable perfect matching, for any fixed $k \geq 2$.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答