This website requires JavaScript.

Small Heegaard genus and SU(2)

John A. BaldwinSteven Sivek
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
Let $Y$ be a closed, orientable 3-manifold with Heegaard genus 2. We prove that if $H_1(Y;\mathbb{Z})$ has order $1$, $3$, or $5$, then there is a representation $\pi_1(Y) \to \mathrm{SU}(2)$ with non-abelian image. Similarly, if $H_1(Y;\mathbb{Z})$ has order $2$ then we find a non-abelian representation $\pi_1(Y) \to \mathrm{SO}(3)$. We also prove that a knot $K$ in $S^3$ is a trefoil if and only if there is a unique conjugacy class of irreducible representations $\pi_1(S^3\setminus K) \to \mathrm{SU}(2)$ sending a fixed meridian to $\left(\begin{smallmatrix}i&0\\0&-i\end{smallmatrix}\right)$.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答