This website requires JavaScript.

Learning Optimal Robust Control of Connected Vehicles in Mixed Traffic Flow

Jie LiJiawei WangShengbo Eben LiKeqiang Li
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
Connected and automated vehicles (CAVs) technologies promise to attenuate undesired traffic disturbances. However, in mixed traffic where human-driven vehicles (HDVs) also exist, the nonlinear human-driving behavior has brought critical challenges for effective CAV control. This paper employs the policy iteration method to learn the optimal robust controller for nonlinear mixed traffic systems. Precisely, we consider the H_infty control framework and formulate it as a zero-sum game, the equivalent condition for whose solution is converted into a Hamilton-Jacobi inequality with a Hamiltonian constraint. Then, a policy iteration algorithm is designed to generate stabilizing controllers with desired attenuation performance. Based on the updated robust controller, the attenuation level is further optimized in sum of squares program by leveraging the gap of the Hamiltonian constraint. Simulation studies verify that the obtained controller enables the CAVs to dampen traffic perturbations and smooth traffic flow.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答