Singlet-triplet-state readout in silicon-metal-oxide-semiconductor double quantum dots
Rong-Long MaSheng-Kai ZhuZhen-Zhen KongTai-Ping SunMing NiYu-Chen ZhouYuan ZhouGang LuoGang CaoGui-Lei WangHai-Ou Li and Guo-Ping Guo
Rong-Long MaSheng-Kai ZhuZhen-Zhen Kong
...+7
Hai-Ou Li and Guo-Ping Guo
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
High-fidelity singlet-triplet state readout is essential for large-scale quantum computing. However, the widely used threshold method of comparing a mean value with the fixed threshold will limit the judgment accuracy, especially for the relaxed triplet state, under the restriction of relaxation time and signal-to-noise ratio. Here, we achieve an enhanced latching readout based on Pauli spin blockade in a Si-MOS double quantum dot device and demonstrate an average singlet-triplet state readout fidelity of 97.59% by the threshold method. We reveal the inherent deficiency of the threshold method for the relaxed triplet state classification and introduce machine learning as a relaxation-independent readout method to reduce the misjudgment. The readout fidelity for classifying the simulated single-shot traces can be improved to 99.67% by machine learning method, better than the threshold method of 97.54% which is consistent with the experimental result. This work indicates that machine learning method can be a strong potential candidate for alleviating the restrictions of stably achieving high-fidelity and high-accuracy singlet-triplet state readout in large-scale quantum computing.