This website requires JavaScript.

Gradient estimates of the heat kernel for random walks among time-dependent random conductances

Jean-Dominique DeuschelTakashi KumagaiMartin Slowik
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
In this paper we consider a time-continuous random walk in $\mathbb{Z}^d$ in a dynamical random environment with symmetric jump rates to nearest neighbours. We assume that these random conductances are stationary and ergodic and, moreover, that they are bounded from below but unbounded from above with finite first moment. We derive sharp on-diagonal estimates for the annealed first and second discrete space derivative of the heat kernel which then yield local limit theorems for the corresponding kernels. Assuming weak algebraic off-diagonal estimates, we then extend these results to the annealed Green function and its first and second derivative. Our proof which extends the result of Delmotte and Deuschel (2005) to unbounded conductances with first moment only, is an adaptation of the recent entropy method of Benjamini et. al. (2015).
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答