This website requires JavaScript.

Optimizing positive maps in the matrix algebra $M_n$

Anindita BeraGniewomir SarbickiDariusz Chru\'sci\'nski
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
We present an optimization procedure for a seminal class of positive maps $\tau_{n,k}$ in the algebra of $n \times n$ complex matrices introduced and studied by Tanahasi and Tomiyama, Ando, Nakamura and Osaka. Recently, these maps were proved to be optimal whenever the greatest common divisor $GCD(n,k)=1$. We attain a general conjecture how to optimize a map $\tau_{n,k}$ when $GCD(n,k)=2$ or 3. For $GCD(n,k)=2$, a series of analytical results are derived and for $GCD(n,k)=3$, we provide a suitable numerical analysis.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答