This website requires JavaScript.

Self-morphing of elastic bilayers induced by mismatch strain: deformation simulation and bio-inspired design

Junjie SongYixiong FengZhaoxi HongBingtao HuJianrong Tanand Xiuju Song
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
The process of self-morphing in curved surfaces found in nature, such as with the growth of flowers and leaves, has generated interest in the study of self-morphing bilayers, which has been used in many soft robots or switchers. However, previous research has primarily focused on materials or bilayer fabrication technologies. The self-morphing mechanism and process have been rarely investigated, despite their importance. This study proposed a new deformation simulation method for self-morphing bilayers based on a checkerboard-based discrete differential geometry approach. This new method achieved higher efficiency than traditional finite element methods while still maintaining accuracy. It was also effective in handling complex finite strain situations. Finally, the simulation model was used to design three self-morphing bilayers inspired by folding flowers, spiral grass, and conical seashells. These designs further prove the effectiveness of the proposed method. The results of this study propose a good method for predicting deformation and designing self-morphing bilayers and provide a useful viewpoint for using geometrical methods to solve mechanical problems.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答