This website requires JavaScript.

Maximum-likelihood fits of piece-wise Pareto distributions with finite and non-zero core

Benjamin F. Maier
Sep 2023
0被引用
0笔记
开学季活动火爆进行中,iPad、蓝牙耳机、拍立得、键盘鼠标套装等你来拿
摘要原文
We discuss multiple classes of piece-wise Pareto-like power law probability density functions $p(x)$ with two regimes, a non-pathological core with non-zero, finite values for support $0\leq x\leq x_{\mathrm{min}}$ and a power-law tail with exponent $-\alpha$ for $x>x_{\mathrm{min}}$. The cores take the respective shapes (i) $p(x)\propto (x/x_{\mathrm{min}})^\beta$, (ii) $p(x)\propto\exp(-\beta[x/x_{\mathrm{min}}-1])$, and (iii) $p(x)\propto [2-(x/x_{\mathrm{min}})^\beta]$, including the special case $\beta=0$ leading to core $p(x)=\mathrm{const}$. We derive explicit maximum-likelihood estimators and/or efficient numerical methods to find the best-fit parameter values for empirical data. Solutions for the special cases $\alpha=\beta$ are presented, as well. The results are made available as a Python package.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答