This website requires JavaScript.
DOI: 10.1101/2022.05.04.490585

A dynamical low-rank approach to solve the chemical master equation for biological reaction networks

M.Prugger L. Einkemmer C. F. Lopez
摘要
Solving the chemical master equation is an indispensable tool in understanding the behavior of biological and chemical systems. In particular, it is increasingly recognized that commonly used ODE models are not able to capture the stochastic nature of many cellular processes. Solving the chemical master equation directly, however, suffers from the curse of dimensionality. That is, both memory and computational effort scale exponentially in the number of species. In this paper we propose a dynamical low-rank approach that enables the simulation of large biological networks. The approach is guided by partitioning the network into biological relevant subsets and thus avoids the use of single species basis functions that are known to give inaccurate results for biological systems. We use the proposed method to gain insight into the nature of asynchronous vs. synchronous updating in Boolean models and successfully simulate a 41 species apoptosis model on a standard desktop workstation.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答