This website requires JavaScript.
DOI: 10.1101/2023.05.22.23290129

Statistical haemoglobin thresholds to define anaemia across the lifecycle

S.Braat K. Fielding J. Han ...+15 S.-R. Pasricha
Detection of anaemia is critical for clinical medicine and public health. Current WHO values that define anaemia are statistical thresholds (5th centile) set over 50 years ago, and are presently <110g/L in children 6-59 months, <115g/L in children 5-11 years, <110g/L in pregnant women, <120g/L in children 12-14 years of age, <120g/L in non-pregnant women, and <130g/L in men. Haemoglobin is sensitive to iron and other nutrient deficiencies, medical illness and inflammation, and is impacted by genetic conditions; thus, careful exclusion of these conditions is crucial to obtain a healthy reference population. We identified data sources from which sufficient clinical and laboratory information was available to determine an apparently healthy reference sample. Individuals were excluded if they had any clinical or biochemical evidence of a condition that may diminish haemoglobin concentration. Discrete 5th centiles were estimated along with two-sided 90% confidence intervals and estimates combined using a fixed-effect approach. Estimates for the 5th centile of the healthy reference population in children were similar between sexes. Thresholds in children 6-23 months were 104.4g/L [90% CI 103.5, 105.3]; in children 24-59 months were 110.2g/L [109.5, 110.9]; and in children 5-11 years were 114.1g/L [113.2, 115.0]. Thresholds diverged by sex in adolescents and adults. In females and males 12-17 years, thresholds were 122.2g/L [121.3, 123.1] and 128.2 [126.4, 130.0], respectively. In adults 18-65 years, thresholds were 119.7g/L [119.1, 120.3] in non-pregnant females and 134.9g/L [134.2, 135.6] in males. Limited analyses indicated 5th centiles in first-trimester pregnancy of 110.3g/L [109.5, 111.0] and 105.9g/L [104.0, 107.7] in the second trimester. All thresholds were robust to variations in definitions and analysis models. Using multiple datasets comprising Asian, African, and European ancestries, we did not identify novel high prevalence genetic variants that influence haemoglobin concentration, other than variants in genes known to cause important clinical disease, suggesting non-clinical genetic factors do not influence the 5th centile between ancestries. Our results directly inform WHO guideline development and provide a platform for global harmonisation of laboratory, clinical and public health haemoglobin thresholds.