This website requires JavaScript.
DOI: 10.1101/2023.05.22.541766

Domain-specific cognitive impairment reflects prefrontal dysfunction in aged common marmosets

C.Glavis-Bloom C. R. Vanderlip P. A. Asch J. Reynolds
Age-related cognitive impairment is not expressed uniformly across cognitive domains. Cognitive functions that rely on brain areas that undergo substantial neuroanatomical changes with age often show age-related impairment, while those that rely on brain areas with minimal age-related change typically do not. The common marmoset has grown in popularity as a model for neuroscience research, but robust cognitive phenotyping, particularly as a function of age and across multiple cognitive domains, is lacking. This presents a major limitation for the development and evaluation of the marmoset as a model of cognitive aging, and leaves open the question of whether they exhibit age-related cognitive impairment that is restricted to some cognitive domains, as in humans. In this study, we characterized stimulus-reward association learning and cognitive flexibility in young adults to geriatric marmosets using a Simple Discrimination and a Serial Reversal task, respectively. We found that aged marmosets show transient impairment in learning-to-learn but have conserved ability to form stimulus-reward associations. Furthermore, aged marmosets have impaired cognitive flexibility driven by susceptibility to proactive interference. Since these impairments are in domains critically dependent on the prefrontal cortex, our findings support prefrontal cortical dysfunction as a prominent feature of neurocognitive aging. This work positions the marmoset as a key model for understanding the neural underpinnings of cognitive aging.