This website requires JavaScript.
DOI: 10.1101/2023.05.23.541878

Quantitative Models of Molecular Dynamics from Sparse Simulation and Experimental Data

C.Kolloff S. Olsson
摘要
Studying the long-timescale behavior of proteins is the key to understanding many of the fundamental processes of life. Molecular Dynamics (MD) simulations and biophysical experiments probe the dynamics of such systems. However, while MD aims to simulate the processes detected in experiments, their predictions are often not in quantitative agreement. Reconciling these differences is a significant opportunity to build quantitative mechanistic models of these systems. To this end, here we present dynamic Augmented Markov Models (dynAMMo), a new approach to integrate dynamic experimental observables, such as NMR relaxation dispersion data, with a Markov state model derived from MD simulation statistics. We find that integrating experimental data that are sensitive to dynamic processes allows us to accurately recover the unbiased kinetics from biased MD simulations. Further, we show that dynAMMo can recover exchange processes not observed in MD data and yield a kinetic model reconciling experiment and simulation, something which has not yet been possible. We demonstrate the effectiveness of dynAMMo using well-controlled model systems and show the broad applicability of the method on a well-studied protein system. Our approach opens up a wealth of new opportunities to quantitatively study protein structure and dynamics from a mechanistic point of view.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答