This website requires JavaScript.
DOI: 10.1101/2023.05.11.540393

Uncertainty-modulated prediction errors in cortical microcircuits

K. A.Wilmes M. A. Petrovici S. Sachidhanandam W. Senn
摘要
To make contextually appropriate predictions in a stochastic environment, the brain needs to take uncertainty into account. Prediction error neurons have been identified in layer 2/3 of diverse brain areas. How uncertainty modulates prediction error activity and hence learning is, however, unclear. Here, we use a normative approach to derive how prediction errors should be modulated by uncertainty and postulate that such uncertainty-weighted prediction errors (UPE) are represented by layer 2/3 pyramidal neurons. We further hypothesise that the layer 2/3 circuit calculates the UPE through the subtractive and divisive inhibition by different inhibitory cell types. We ascribe different roles to somatostatin-positive (SST), and parvalbumin-positive (PV) interneurons. By implementing the calculation of UPEs in a microcircuit model, we show that different cell types in cortical circuits can compute means, variances and UPEs with local activity-dependent plasticity rules. Finally, we show that the resulting UPEs enable adaptive learning rates.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答