This website requires JavaScript.
DOI: 10.1101/2023.05.10.540169

Genome-wide profiling of DNA repair identifies higher-order coordination in single cells

K. L.de Luca P. M. Rullens G. Legube J. Kind
摘要
Accurate repair of DNA damage is critical for maintenance of genomic integrity and cellular survival. Because damage occurs non-uniformly across the genome, single-cell resolution is required for proper interrogation, but sensitive detection has remained challenging. Here, we present genome-wide binding profiles of DNA double-strand break repair proteins in single cells, allowing for the study of heterogeneity in genomic damage locations and associated repair features. By unbiasedly detecting repair-enriched segments, we find that repair proteins often occupy entire topologically associating domains and mimic variability in chromatin loop anchoring. Genomic loci that form damage-specific 3D contacts show multi-way repair coordination in individual cells that becomes stronger according to the number of interaction partners. These findings advance our understanding of genome stability in the context of nuclear organization.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答