This website requires JavaScript.
DOI: 10.1101/2023.04.30.23289317

Geographic pair-matching in large-scale cluster randomized trials

B. F.Arnold F. Rerolle C. Tedijanto ...+13 J. Benjamin-Chung
摘要
Custer randomized trials are often used to study large-scale public health interventions. In large trials, even small improvements in statistical efficiency can have profound impacts on the required sample size and cost. Pair matched randomization is one strategy with potential to increase trial efficiency, but to our knowledge there have been no empirical evaluations of pair-matching in large-scale, epidemiologic field trials. Location integrates many socio-demographic and environmental characteristics into a single feature. Here, we show that geographic pair-matching leads to substantial gains in statistical efficiency for 14 child health outcomes that span growth, development, and infectious disease through a re-analysis of two large-scale trials of nutritional and environmental interventions in Bangladesh and Kenya. We estimate relative efficiencies [≥]1.1 for all outcomes assessed and relative efficiencies regularly exceed 2.0, meaning an unmatched trial would have needed to enroll at least twice as many clusters to achieve the same level of precision as the geographically pair-matched design. We also show that geographically pair-matched designs enable estimation of fine-scale, spatially varying effect heterogeneity under minimal assumptions. Our results demonstrate broad, substantial benefits of geographic pair-matching in large-scale, cluster randomized trials.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答