This website requires JavaScript.
DOI: 10.1101/2022.10.19.512946

Dual receptive fields underlying target and wide-field motion sensitivity in looming sensitive descending neurons

S.Nicholas Y. Ogawa K. Nordstrom
摘要
Responding rapidly to visual stimuli is fundamental for many animals. For example, predatory birds and insects alike have amazing target detection abilities, with incredibly short neural and behavioral delays, enabling efficient prey capture. Similarly, looming objects need to be rapidly avoided to ensure immediate survival, as these could represent approaching predators. Male Eristalis tenax hoverflies are non-predatory, highly territorial insects, that perform high-speed pursuits of conspecifics and other territorial intruders. During the initial stages of the pursuit the retinal projection of the target is very small, but grows to a larger object before physical interaction. Supporting such behaviors, E. tenax and other insects have both target-tuned and loom-sensitive neurons in the optic lobes and the descending pathways. We here show that these visual stimuli are not necessarily encoded in parallel. Indeed, we describe a class of descending neurons that respond to small targets, to looming and to widefield stimuli. We show that these neurons have two distinct receptive fields where the dorsal receptive field is sensitive to the motion of small targets and the ventral receptive field responds to larger objects or widefield stimuli. Our data suggest that the two receptive fields have different pre-synaptic input, where the inputs are not linearly summed. This novel and unique arrangement could support different behaviors, including obstacle avoidance, flower landing, target pursuit or capture.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答