This website requires JavaScript.
DOI: 10.1101/2023.03.13.23287208

Statistical Challenges when Analyzing SARS-CoV-2 RNA Measurements Below the Assay Limit of Quantification in COVID-19 Clinical Trials

C. B.Moser K. W. Chew M. J. Giganti ...+11 M. D. Hughes
摘要
Most clinical trials evaluating COVID-19 therapeutics include assessments of antiviral activity. In recently completed outpatient trials, changes in nasal SARS-CoV-2 RNA levels from baseline were commonly assessed using analysis of covariance (ANCOVA) or mixed models for repeated measures (MMRM) with single-imputation for results below assay lower limits of quantification (LLoQ). Analyzing changes in viral RNA levels with singly-imputed values can lead to biased estimates of treatment effects. In this paper, using an illustrative example from the ACTIV-2 trial, we highlight potential pitfalls of imputation when using ANCOVA or MMRM methods, and illustrate how these methods can be used when considering values <LLoQ as censored measurements. Best practices when analyzing quantitative viral RNA data should include details about the assay and its LLoQ, completeness summaries of viral RNA data, and outcomes among participants with baseline viral RNA [&ge;]LLoQ, as well as those with viral RNA <LLoQ.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答