This website requires JavaScript.

On Steiner Symmetrizations for First Exit Time Distributions

Tim Rolling
Mar 2023
摘要
Given an $\alpha$-stable symmetric process $A_t$ and a bounded domain $D$,the goal of this paper is to show how first exit time distributions of $A_t$from $D$ increase through the use of Steiner symmetrization. It is also shownthat, when a sequence of domains $\{D_m\}$ satisfying the $\varepsilon$-conecondition converges to a domain $D'$ with respect to the Hausdorff metric, thecorresponding sequence of first exit time distributions of Brownian motion from$D_m$ converges to the first exit time distribution of Brownian motion from$D'$. These results will be then applied to establish results on distributionsof first exit times on specific sequences of domains such as triangles andquadrilaterals.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答