This website requires JavaScript.

An exponential improvement for diagonal Ramsey

Marcelo CamposSimon GriffithsRobert MorrisJulian Sahasrabudhe
Mar 2023
摘要
The Ramsey number $R(k)$ is the minimum $n \in \mathbb{N}$ such that everyred-blue colouring of the edges of the complete graph $K_n$ on $n$ verticescontains a monochromatic copy of $K_k$. We prove that \[ R(k) \leqslant (4 -\varepsilon)^k \] for some constant $\varepsilon > 0$. This is the firstexponential improvement over the upper bound of Erd\H{o}s and Szekeres, provedin 1935.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答