This website requires JavaScript.

MATIS: Masked-Attention Transformers for Surgical Instrument Segmentation

Nicol\'as AyobiAlejandra P\'erez-Rond\'onSantiago Rodr\'iguezPablo Arbel\'aez
Mar 2023
摘要
We propose Masked-Attention Transformers for Surgical Instrument Segmentation(MATIS), a two-stage, fully transformer-based method that leverages modernpixel-wise attention mechanisms for instrument segmentation. MATIS exploits theinstance-level nature of the task by employing a masked attention module thatgenerates and classifies a set of fine instrument region proposals. Our methodincorporates long-term video-level information through video transformers toimprove temporal consistency and enhance mask classification. We validate ourapproach in the two standard public benchmarks, Endovis 2017 and Endovis 2018.Our experiments demonstrate that MATIS' per-frame baseline outperforms previousstate-of-the-art methods and that including our temporal consistency moduleboosts our model's performance further.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答