This website requires JavaScript.
DOI: 10.1038/s43588-022-00311-3

Challenges and Opportunities in Quantum Machine Learning

M. CerezoGuillaume VerdonHsin-Yuan HuangLukasz CincioPatrick J. Coles
Mar 2023
摘要
At the intersection of machine learning and quantum computing, QuantumMachine Learning (QML) has the potential of accelerating data analysis,especially for quantum data, with applications for quantum materials,biochemistry, and high-energy physics. Nevertheless, challenges remainregarding the trainability of QML models. Here we review current methods andapplications for QML. We highlight differences between quantum and classicalmachine learning, with a focus on quantum neural networks and quantum deeplearning. Finally, we discuss opportunities for quantum advantage with QML.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答