This website requires JavaScript.

Chromatic aberrations of geometric Satake over the regular locus

Sanath K. Devalapurkar
Mar 2023
摘要
Let $G$ be a connected and simply-connected semisimple group over$\mathbf{C}$, let $G_c$ be a maximal compact subgroup of $G(\mathbf{C})$, andlet $T$ be a maximal torus. The derived geometric Satake equivalence ofBezrukavnikov-Finkelberg localizes to an equivalence between a full subcategoryof $\mathrm{Loc}_{G_c}(\Omega G_c; \mathbf{C})$ and$\mathrm{QCoh}(\check{\mathfrak{g}}^{\mathrm{reg}}[2]/\check{G})$, which can bethought of as a version of the geometric Satake equivalence "over the regularlocus". In this article, we study the story when $\mathrm{Loc}_{T_c}(\OmegaG_c; \mathbf{C})$ is replaced by the $\infty$-category of $T$-equivariant localsystems of $A$-modules over $\mathrm{Gr}_G(\mathbf{C})$, where $A$ is acomplex-oriented even-periodic $\mathbf{E}_\infty$-ring equipped with anoriented group scheme $\mathbf{G}$. We show that upon rationalization,$\mathrm{Loc}_{T_c}(\Omega G_c; A)$, which was studied variously byArkhipov-Bezrukavnikov-Ginzburg and Yun-Zhu when $A = \mathbf{C}[\beta^{\pm1}]$, can be described in terms of the spectral geometry of variousLanglands-dual stacks associated to $A$ and $\mathbf{G}$. For example, thisimplies that if $A$ is an elliptic cohomology theory with elliptic curve $E$,then $\mathrm{Loc}_{T_c}(\Omega G_c; A) \otimes \mathbf{Q}$ can be describedvia the moduli stack of $\check{B}$-bundles of degree $0$ on $E^\vee$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答