This website requires JavaScript.
DOI: 10.1016/j.jnt.2023.01.014

Distribution and divisibility of the Fourier coefficients of certain Hauptmoduln

Chiranjit Ray
Mar 2023
摘要
Suppose $j_N(\tau)$ and $j_N^{*}(\tau)$ are the Hauptmoduln of the congruencesubgroup $\Gamma_0(N)$ and the Fricke group $\Gamma^{*}_0(N)$, respectively. In[7], the authors predicted that, like Klein's $j$-function, the Fouriercoefficients of $j_N(\tau)$ and $j_{N}^{*}(\tau)$ in some arithmeticprogression are both even and odd with density $\frac{1}{2}$. In this article,we can find some arithmetic progression of $n$ where the Fourier coefficientsof $j_6(\tau)$ (resp. $j_6^{*}(\tau)$ and $j_{10}(\tau)$) are almost alwayseven. Furthermore, using Hecke eigenforms and Rogers-Ramanujan continuedfraction, we obtain infinite families of congruences for $j_6(\tau)$,$j_6^{*}(\tau)$, $j_{10}(\tau),$ and $j_{10}^{*}(\tau)$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答