This website requires JavaScript.

Kempe Classes and Almost Bipartite Graphs

Daniel W. CranstonCarl Feghali
Mar 2023
摘要
Let $G$ be a graph and $k$ be a positive integer, and let $Kc(G, k)$ denotethe number of Kempe equivalence classes for the $k$-colorings of $G$. In 2006,Mohar noted that $Kc(G, k) = 1$ if $G$ is bipartite. As a generalization, weshow that $Kc(G, k) = 1$ if $G$ is formed from a bipartite graph by adding anynumber of edges less than $\binom{\lceil k/2\rceil}2+\binom{\lfloork/2\rfloor}2$. We show that our result is tight (up to lower order terms) byconstructing, for each $k \geq 8$, a graph $G$ formed from a bipartite graph byadding $(k^2+8k-45+1)/4$ edges such that $Kc(G, k) \geq 2$. This refutes arecent conjecture of Higashitani--Matsumoto.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答