This website requires JavaScript.

The perfectoid Tate algebra has uncountable Krull dimension

Jack J. Garzella
Dec 2022
摘要
Let $K$ be a perfectoid field with pseudo-uniformizer $\pi$. We adapt anargument of Du to show that the perfectoid Tate algebra $K\langle x^{1 /p^{\infty}} \rangle$ has an uncountable chain of distinct prime ideals. First,we conceptualize Du's argument, defining the notion of a 'Newton polygonformalism' on a ring. We prove a version of Du's theorem in the prescence of asufficiently nondiscrete Newton polygon formalism. Then, we apply our frameworkto the perfectoid Tate algebra via a "nonstandard" Newton polygon formalism(roughly, the roles of the series variable $x$ and the pseudo-uniformizer $\pi$are switched). We conclude a similar statement for multivatiate perfectoid Tatealgebras using the one-variable case. We also answer a question of Heitmann,showing that if $R$ is a complete local noetherian domain of mixedcharacteristic $(0,p)$, the $p$-adic completion of it's absolute integralclosure $R^{+}$ has uncountable Krull dimension.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答