This website requires JavaScript.

Aharoni's rainbow cycle conjecture holds up to an additive constant

Patrick HompeTony Huynh
Dec 2022
摘要
In 2017, Aharoni proposed the following generalization of theCaccetta-H\"{a}ggkvist conjecture: if $G$ is a simple $n$-vertex edge-coloredgraph with $n$ color classes of size at least $r$, then $G$ contains a rainbowcycle of length at most $\lceil n/r \rceil$. In this paper, we prove that, for fixed $r$, Aharoni's conjecture holds up toan additive constant. Specifically, we show that for each fixed $r \geq 1$,there exists a constant $c_r$ such that if $G$ is a simple $n$-vertexedge-colored graph with $n$ color classes of size at least $r$, then $G$contains a rainbow cycle of length at most $n/r + c_r$.
展开全部
图表提取

暂无人提供速读十问回答

论文十问由沈向洋博士提出,鼓励大家带着这十个问题去阅读论文,用有用的信息构建认知模型。写出自己的十问回答,还有机会在当前页面展示哦。

Q1论文试图解决什么问题?
Q2这是否是一个新的问题?
Q3这篇文章要验证一个什么科学假设?
0
被引用
笔记
问答